Bài giảng Biến đổi năng lượng điện cơ - Bài giảng 3 - Nguyễn Quang Nam (Phần 2)
408001
Biến đổi năng lượng điện cơ
Giảng viên: TS. Nguyễn Quang Nam
2012 – 2013, HK2
Bài giảng 3
1
Động học của hệ tập trung – Hệ khối lượng-lò xo
‹ Các phần tử tập trung của hệ cơ: khối lượng (động
năng), lò xo (thế năng), và bộ đệm (tiêu tán). Định luật
Newton được dùng cho phương trình chuyển động.
‹ Xét khối lượng M = W/g được treo trên lò xo có độ cứng
K. Ở điều kiện cân bằng tĩnh, trọng lực W = Mg được cân
bằng bởi lực lò xo Kl, với l là độ giãn của lò xo gây ra bởi
khối lượng W.
Bài giảng 3
37
Động học của hệ tập trung – Hệ khối lượng-lò xo
‹ Nếu vị trí cân bằng được chọn làm gốc, chỉ có lực sinh ra
bởi dịch chuyển cần được xem xét. Xét mô hình vật tự do
trong hình 4.35(c).
‹ Định luật Newton: Lực gia tốc theo chiều dương của x
bằng với tổng đại số tất cả các lực tác động lên khối lượng
theo chiều dương của x.
&&
&&
Mx = −Kx
hay Mx + Kx = 0
Bài giảng 3
38
Hệ khối lượng-lò xo với phần tử tiêu tán
‹ Nếu vị trí chưa biến dạng được chọn làm gốc (Hình 4.36),
khi đó
&&
My + K
y − l = 0
&&
My + Ky = Mg
&&
My = −Ky + Mg
Mg = Kl
‹ Chú ý rằng
‹ Xét khối lượng M được đỡ bởi lò xo (hình 4.37), và một tổ
hợp lò xo-bộ đệm. f(t) là lực áp đặt. x được đo từ vị trí cân
bằng tĩnh. Một bộ đệm lý tưởng sẽ có lực tỷ lệ với vận tốc
tương đối giữa hai nút, với ký hiệu như trong hình 4.38.
Bài giảng 3
39
Hệ khối lượng-lò xo với phần tử tiêu tán (tt)
‹ Áp dụng định luật Newton, có thể viết được phương trình
chuyển động của vật tự do như sau
f(t)
fK1
fB1
&&
Mx = f
t
)
− fK1 − fK 2 − fB
− K1x − K2 x − B
dx
dt
M
= f
(
t
x
fK2
Bài giảng 3
40
Ví dụ 4.17
∏ Viết các phương trình cơ học cho hệ trong hình 4.40.
x1
x2
K1x1
K2x
K2x
K3x2
M1
M2
&
&
&
B3 x2
B1x1
B2 x
&
B2 x
f1(t)
f2(t)
‹ Định nghĩa x2 – x1 = x
&&
&
&
&
M1x1 = f1
&&
t
+ K2
x2 − x1
+ B2
x2 − x1
− B1x1 − K1x1
&
&
&
− B3 x2 − K3 x2
M 2 x2 = f2
t
− B2
x2 − x1
− K2
x2 − x1
Bài giảng 3
41
Mô hình không gian trạng thái
‹ Mô tả động học hoàn chỉnh của hệ thu được từ việc viết
các phương trình cho phía điện và phía cơ. Các phương
trình này có liên kết, và tạo ra một hệ các phương trình vi
phân bậc nhất dùng cho phân tích. Hệ phương trình này
được coi là mô hình không gian trạng thái của hệ thống.
‹ Vd. 4.19: Với hệ thống trong hình 4.43, chuyển các
phương trình điện và cơ về dạng không gian trạng thái. Từ
thông móc vòng từ vd. 4.8,
N 2i2
N2i
N2i
Wm' =
λ
=
=
Ù
2R
( )
x
Rc + Rg
(
x
)
R
( )
x
Bài giảng 3
42
Mô hình không gian trạng thái (tt)
‹ Ở phía hệ điện,
N 2 di
N 2i 2 dx
vs = iR +
−
R2
R
(
x